Control of flower development and phyllotaxy by meristem identity genes in antirrhinum.

نویسندگان

  • R Carpenter
  • L Copsey
  • C Vincent
  • S Doyle
  • R Magrath
  • E Coen
چکیده

The flower meristem identity genes floricaula (flo) and squamosa (squa) promote a change in phyllotaxy from spiral to whorled in Antirrhinum. To determine how this might be achieved, we have performed a combination of morphological, genetic, and expression analyses. Comparison of the phenotypes and RNA expression patterns of single and double mutants with the wild type showed that flo and squa act together to promote flower development but that flo is epistatic to squa with respect to early effects on phyllotaxy. We propose that a common process underlies the phyllotaxy of wildtype, flo, and squa meristem development but that the relative timing of primordium initiation or growth is altered. This process depends on two separable events: setting aside zones for potential primordium initiation and partitioning these zones into discrete primordia. Failure of the second event can lead to the formation of continuous double spirals, which are occasionally seen in flo mutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell lineage patterns and homeotic gene activity during Antirrhinum flower development

BACKGROUND Homeotic genes controlling the identity of flower organs have been characterized in several plant species. To determine whether cells expressing these genes are specified to follow particular developmental fates, we have studied the pattern of cell lineages in developing flowers of Antirrhinum. Each flower has four whorls of organs, and progenitor cells of these can be marked at part...

متن کامل

Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum.

The unusual floral organs (ufo) mutant of Arabidopsis has flowers with variable homeotic organ transformations and inflorescence-like characteristics. To determine the relationship between UFO and previously characterized meristem and organ identity genes, we cloned UFO and determined its expression pattern. The UFO gene shows extensive homology with FIMBRIATA (FIM), a gene mediating between me...

متن کامل

LEAFY controls floral meristem identity in Arabidopsis

The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the m...

متن کامل

Regulation of Arabidopsis flower development.

Plant development is governed by intrinsic and environmental factors that regulate the identity and activity of meristems, organized tissues of pluripotent "stem" cells, that together determine plant form and architecture. However, little is known about how these factors act at the molecular leve1 to affect meristem identity and function. Genetic studies in Arabidopsis and other plant species s...

متن کامل

Molecular and genetic mechanisms of floral control.

In the last 15 years, knowledge of the molecular and genetic mechanisms that underlie floral induction, floral patterning, and floral organ identity has exploded. Elucidation of basic mechanisms has derived primarily from work in three dicot species: Antirrhinum majus, Arabidopsis thaliana, and Petunia hybrida. Although Antirrhinum and petunia have contributed fundamental breakthroughs to our u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 7 12  شماره 

صفحات  -

تاریخ انتشار 1995